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On the Impulse Response of a Coupled~Mode
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Absfracf—The impulse response is derived for a simple coupled-

mode system in which two modes of propagation are passively

coupled. It is found that if one mode is driven with an impulse, the

response of the other mode consists of a sharply defined RF puke,

of constant maximum amplitude, whose length increases linearly

with both time and distance of propagation. The energy of the

coupled pulse is found to approach an equilibrium value as the time

(or length) of interaction increases without limit.

I. INTRODUCTION

w

E CONSIDER HERE a linear, uniform, loss-

Iess, passive, wave transmission system of infi-

nite length in which two modes of propagation,

with group velocities in the same direction, are weakly

coupled together. The type of coupling that occurs

under these conditions is called “passive mode cou-

pling, ” 1 or ‘(co-flow hermitian coupling, ” 2 and is charac-

terized by the frequency-domain coupled-mode equa-

tions,l,z

Cl%(z, cd)

az ‘–
‘x?ldl(z, co) — W2(Z, cd) (1)

IMz(z, Co)
—— – — ii?*& (z, co) — ipzdz(z, (LI)—

dz
(2)

where 81(z, O) and d2.(z, u) are the frequency-domain

amplitudes of the two modes, ~1 and & are the (uncou-

pled) propagation constants of the two modes, and t is

the complex coupling coefficient between the two modes.

The behavior of this type of coupled-mode system, for

an input that varies sinusoidally with time, consists of

the familiar periodic interchange of power between the

two modes. 1,2,3 It is the purpose of this paper to point out

the rather curious response that this coupled system

exhibits when the input to one of the modes is an im-

pulse (or delta function) in time. In particular, we shall

examine the response of Mode 2 when Mode 1 is driven

with an im”pulse.

For weak coupling, the nature of the interaction will

depend only upon the characteristics of the system at

frequencies in the neighborhood of the frequency at

which the two modes have equal phase velocities. Thus,

Manuscript received January 18, 1965; revised March 15, 1965.
This work was supported by the Am Force Systems Command, Re-
search and Technology Div., Rome Air Development Center,
Griffiss AFf3, New York, N. Y.

The author is with Stanford Research Institute, hlenlo Park,-.. .
Uaht.

1 Louisell, W. H., Coupled Mode and Parametric Electronics. New
York: Wiley, 1960, ch 1, pt II.

2 Barnes, C. W., Conservative coupling between modes of propa-
gation—a tabular summary, P~oc. IEEE, vol 52, Jan 1964, pp 64–73.

3 Pierce, J. R., Coupling of modes of propagation, Y. A@pl. Phys.,
vol 25, Feb 1954, pp 179-183.

System

we shall be able to derive some rather general results

without having to make any severely restrictive assump-

tions about the nature of the modes.

II. ANALYSIS

We consider two modes of propagation whose un-

coupled u — 13characteristics intersect as shown in Fig. 1.

If the coupling between the two modes is weak, then

the only significant interaction occurs at frequencies in

the neighborhood of coo, the frequency at which the two

uncoupled modes have equal phase velocities. We shall

assume that in the neighborhood of COO,the uncoupled

u —/3 characteristics of the two modes can be approxi-

mated by the straight lines described by

/% = Do + (@– coo)/U (3)

and

/32 = /?0 + (a – cJo)/v2 (4)

where VI and VZ are the group velocities of the two

modes at frequency coo. We further assume that the

coupling coefficient $, which we write in the phasor form,

(5)

is a sufficiently slowly varying function of frequency so

that, for the weak coupling case, we can approximate it

in the neighborhood of U. by a constant.

u

‘o -

Fig. 1. cc— D Characteristics of the uncoupled modes.

d In order to be explicit, we shall assume throughout the analysis
that V2>zII. This does not restrict the generality of the results. The
behavior of the system for the alternate case is, wudatis mutandis,
essentially the same.
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The solution of (1) and (2) for the amplitude of Mode where

2 in terms of the boundary conditions at the input (i.e.,

atz=f))isli~

“(zw)=u4+31’2sin[hz(1 +3) ’21 ““

{[

~*

tk(z, u) = 81(0, CL)) —i—sin~z
E-

and

(16)

“ex’’[-if%)zl

Note that the parameter wI, which is directly pro por-

(6) tional to the magnitude of the coupling coefficient ~:, is

a measure of the angular bandwidth of the coup]~ed-

where mode interaction. In terms of al, the criterion for the

A@=@l–~z (7)
weak-coupling (or narrow-band) case is, therefore,

and ml << (00. (17)

& = [K2 + (Afl/2)2] 1/’, (8)
The time-domain amplitude of Mode 2 is now ob-

The time-domain mode amplitudes are related to the
tained by substituting (14) into (9). The evaluation of

frequency-domain mode amplitudes by the Fourier
the integral in (9) is greatly simplified if we note that

for the weak coupling case (where WI<<WO), we can ex-
transform relation5

tend the lower limit of the integral to — cc without in-

lm

J
curring significant error; upon doing this, we find that

(z(z, t) = — 6(Z, W)e‘mtdw + C.C. (9) the time domain amplitude is given by
2X ‘

where C.C. indicates the complex conjugate.

We now consider the case where the boundary condi-

tions at z = O are given by

al(O, t) = aoti(t) (lo)

and

U!j(o, t) = o (11)

or

dl(O, u) = aO (12)

and

82(0, Q) = o (13)

where 6(t) is the unit impulse and a’ is a real constant.

If we now substitute into (6) the boundary condi-

tions, given by (12) and (13), and the expressions for &

and /3z, given by (3) and (4), we find that the frequency-

domain amplitude of Mode 2 can be written in the form

(i2(z, co) = — iA2(z, co — t40) exp
{-’[’oz+rfiH)

“(:+3+4 ““

5 By ~vritiug the Fourier transform relation in the form given by
(9), rather than the more familiar double-sided form! we avoid the
necessity of explicitly considering the coupled-mode interactions at
negative frequencies; the negative frequencies arc taken care of
automatically by the addition of the complex conjugate term.

az(z, t) = F(2, t) sin (f-oot — ,f?Oz–- @) (18)

where

F(Z> t) = UOOJJO{+X:-’)]”} ’19)
for

(z/@ < t < (z/v,),

and

F(z, t) = o (20)

for

t < (z/va) or t > (z/vi).

Thus, we see that the response of Mode 2 to arl im-

pulse input on Mode 1 consists of a wave of the form

sin (wOt —f30z) that is modulated in amplitude by a

single pulse. A sketch of a typical form of the pulse en-

velope, as a function of Z, is shown in Fig. 2. Note that

the pulse envelope has a sharp leading edge that travels

with velocity V2 and a sharp trailing edge that travels

with velocity VI. The maximum amplitude of the pulse

envelope is independent of both z and t, and the pulse

envelope length, measured along the z axis, increases

linearly with time. The pulse envelope length, measured

along the t axis, increases the linearly with z.

In Fig. 3 we show a normalized time sequence fc,r the

pulse envelope for the speciaI case where V2= 2vl. In

these plots, the point where KZ = 7r/2 is marked for ref-

erence since this is the point at which total power trans-
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fer to Mode 2 would have occurred if the input to Mode

1 had been a sinusoid at frequency wO.

It is also interesting to consider the total energy car-

ried by the pulse on Mode 2. The spectral energy density

in Mode 2 is given by

dz(z, al) &’*(z, CO)
24(2, CO) =

27rw(cO)
(21)

where W’(r-o) is an appropriate immittance function for

Mode 2. The total energy carried past a given point z

is, therefore.

u(z) = :
s

m 82(Z, @)d2*(z, Lo)
da.

23r o W(co)
(22)

If the immittance function W(u) is a slowly varying

function of o in the neighborhood of COO,then for the

weak coupling case we can approximate W(o) in the

neighborhood of UO by

w(u) = W(cll))= Wo. (23)

Also, for the weak coupling case, we can extend the

lower limit of the integral in (22) to – ~ without in-

curring significant error. Thus, upon substituting (23)

and (14) into (22) and extending the lower limit of inte-

gration, we find that

u(z) = & J_:[A2(z, co– cm)]% (24)

or

zrw~ ~_~(l + s’)-’ sinz [Kz(l + s’) I/~]ds (25)u(z) = m

where

If we make the change of variables s = sinh x in (25),

differentiate with respect to z, recognize a familiar

Bessel function identity and then integrate with respect

to z we find that the pulse energy can be expressed in

the form

262

u(z) = a-
s

Jo(x)dx.
4WII ~

(27)

the integral in (27) has been tabulated. G

have plotted the normalized pulse energy

Fortunately,

In Fig. 4 we

as a function of ~z. Note that as ~z increases, the pulse

energy goes through a sequence of maxima and minima

c Abramowitz, M., and 1. A. Stegun, Handbook of Mathematical
Functions, NBS Appl. Math. Ser., U. S. Government Printing Office,
1964, vol 55.
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Fig. 2. Typical form of pulse envelope on Mode 2 in response to an
impulse input of magnitude UOon Mode 1.
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Fig. 3, A time sequence of pulse envelopes on Mode 2
for the case where ZJZ= 2vI.
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Fig. 4. Total energy in the pulse on Mode 2 for an
impulse input of magnitude ao on Mode 1.
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and ultimately,

value. That is,

de Ronde: X-Band

for Kz>>i, approaches an equilibrium

ao%l
u(z) -+ —.. . (28)

4W0

as z- co. The first maximum, where the pulse energy

overshoots the equilibrium value by almost 50 per cent,

ot’curs at the smallest value of KZ for which

~,,(2KZ) = f); (29)

that is, at

KZ = 1.202. (30)

The position of the first maximum could be used as a

basis for measurement of the coupling coefficient in a

coupled-mode system.

Thus, as the pulse on Mode 2 propagates along the

transmission system, the pulse length grows without

bound and the shape of the pulse envelope continues

to change, but the energy of the pulse approaches an

equilibrium value that is directly proportional to the

magnitude of the coupling coefficient.
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III. COMMENTS

Coupled-mode systems are customarily characterized

by their frequency-domain response. We have pre-

sented here a derivation of the time-domain response

of an important class of coupled-mode systems; we

hope that this derivation will provide new insights into

the behavior of these systems.

The principal assumptions that we have made are

1) that the coupling coefficient between modes is inde-

pendent of frequency, and 2) that the u – ~ characteris-

tics of the two modes are straight lines. Note that. the

assumption of a linear w —/3 characteristic is not the

same as an assumption of zero dispersion. It is clear

from (14) and (15) that for weak coupling, most of the

energy transfer between modes occurs in the frequency

range UO— w to ao + wI. Thus, if the o — ~ characteristics

are straight in this frequency range, andl the coupling

coefficient is constant in this freguency range, then the

results that we have derived here should be approxi-

mately correct. If the u —/3 characteristics deviate from

linearity outside of the frequency range UO– WI to WO

+Ul, the resulting effect would probably be a rounding

of the sharp edges of the pulse on Mode 2.

A Precise and Sensitive X@Band Reflecto’’meter”

Providing Automatic Full~Band Display of

Reflection Coefficient

F. C. DE RONDE

Absfracf—A simple waveguide system has been made for the

instantaneous measurement of the magnitude of the reflection co-

efficient as a function of frequency for the 8.2-12.4 Gc band.
Reflection coefficients in the range 1 to 0.001 can be measured on

linear scales; above 0.01 the error is less than ~ 3 per cent, below
0.01 it is estimated to be in the order of i 5 per cent.

By using a long line between the unknown impedance and the

two wall-current detectors, which act as measuring probes, an audio-

frequency voltage has been obtained which is linearly proportional

to the amplitude of the unknown reflection coefficient.
A third wall-current detector is used as a leveler.
The principle is quite simple and can easily be applied for other

frequencies or transmission lines.
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I. INTRODLTCTION

, EFLECTO’’METERS” using directional cou-

R
piers and a radiometer are commonly usecl for

swept-frequency display. Although they work

much faster than standing-wave indicators their ;accu-

racy is considerably lower. A great improvement over the

usual method of two couplers together with broadband

detectors can be obtained if one directional coupler

with built-in wall-current detectors [I], [2] is used.

However, the finite directivity of the directional coupler

and its variation with frequency limits the accuracy

especially at very low values of the reflection coefficient,

while reflection of the coupler limits it at very high

values.


