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On the Impulse Response of a Coupled-Mode System

C. W. BARNES, sSENTOR MEMBER, IEEE

Abstract—The impulse response is derived for a simple coupled-
mode system in which two modes of propagation are passively
coupled. It is found that if one mode is driven with an impulse, the
response of the other mode consists of a sharply defined RF pulse,
of constant maximum amplitude, whose length increases linearly
with both time and distance of propagation. The energy of the
coupled pulse is found to approach an equilibrium value as the time
(or length) of interaction increases without limit.

I. INTRODUCTION

E CONSIDER HERE a linear, uniform, loss-

&;%/ less, passive, wave transmission system of infi-

nite length in which two modes of propagation,

with group velocities in the same direction, are weakly

coupled together. The type of coupling that occurs

under these conditions is called “passive mode cou-

pling,”? or “co-flow hermitian coupling,”? and is charac-

terized by the frequency-domain coupled-mode equa-
tions,-2

6(7:1(2, w) [ .
—— = — i181(z, w) — ikds(3, w) 0
0z
afiz(z, w) s a 0 A
S = — 1t*d1(z, w) — 1Bads(3, w) (2)
z

where d:1(z, w) and é@:(2, w) are the frequency-domain
amplitudes of the two modes, 8; and B, are the (uncou-
pled) propagation constants of the two modes, and # is
the complex coupling coefficient between the two modes.
The behavior of this type of coupled-mode system, for
an input that varies sinusoidally with time, consists of
the familiar periodic interchange of power between the
two modes.!?# It is the purpose of this paper to point out
the rather curious response that this coupled system
exhibits when the input to one of the modes is an im-
pulse (or delta function) in time. In particular, we shall
examine the response of Mode 2 when Mode 1 is driven
with an impulse.

For weak coupling, the nature of the interaction will
depend only upon the characteristics of the system at
frequencies in the neighborhood of the frequency at
which the two modes have equal phase velocities. Thus,
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we shall be able to derive some rather general results
without having to make any severely restrictive assump-
tions about the nature of the modes.

II. ANALYSIS

We consider two modes of propagation whose un-
coupled w— @ characteristics intersect as shown in Fig. 1,
If the coupling between the two modes is weak, then
the only significant interaction occurs at frequencies in
the neighborhood of w,, the frequency at which the two
uncoupled modes have equal phase velocities. We shall
assume that in the neighborhood of w,, the uncoupled
w— @ characteristics of the two modes can be approxi-
mated by the straight lines described by

B1 = Bo+ (w0 — wo) /11 3)
and

B2 = Bo + (0 — wo)/vs 4

where v; and v, are the group velocities? of the two
modes at frequency wo. We further assume that the
coupling coefficient £, which we write in the phasor form,

& = ket (5)

is a sufficiently slowly varying function of frequency so
that, for the weak coupling case, we can approximate it
in the neighborhood of wy by a constant.

By B

Fig. 1. w—p Characteristics of the uncoupled modes.

4 In order to be explicit, we shall assume throughout the analysis
that v, >v;. This does not restrict the generality of the results. The
behavior of the system for the alternate case is, mutatis mutandis,
essentially the same.
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The solution of (1) and (2) for the amplitude of Mode
2 in terms of the boundary conditions at the input (i.e.,
atz=0)is 1.2

Ak -

da(z, @) = {@1(0, w)[—i%sin ¢

AB
4+ @,(0, w)i:cos 2414 7@ sin Ez]}

exp [—i(ﬁ 1 ";EH (©)

AB = B1— B2 M

where

and

E= [+ (a8/2)2' (8)

The time-domain mode amplitudes are related to the
frequency-domain mode amplitudes by the Fourier
transform relation®

1 ©
a(z, 1) = Zf 4(z, w)e™tdw + c.c. %)
0

where c.c. indicates the complex conjugate.
We now consider the case where the boundary condi-
tions at =0 are given by

a1(0, 1) = ad(t) (10)
and
ax(0,¢) = 0 (11)
or
41(0, @) = ao (12)
and
4200, w) = 0 (13)

where §(¢) is the unit impulse and a, is a real constant.

If we now substitute into (6) the boundary condi-
tions, given by (12) and (13), and the expressions for §8;
and B, given by (3) and (4), we find that the frequency-
domain amplitude of Mode 2 can be written in the form

— ida(z, 0 — wo) exp {_i [50% + <ﬂ;2fﬂ>

Gori)erel o

5 By writing the Fourier transform relation in the form given by
(9), rather than the more familiar double-sided form, we avoid the
necessity of explicitly considering the coupled-mode interactions at
negative frequencies; the negative frequencies are taken care of
automatically by the addition of the complex conjugate term.
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where

w2 \—1/2 w2 \1/2
Aa(z, w) = ug <1 + —~> sin [ v <1 + ———> ] (15)
w12 (4)12

and
<1 1\t
o1 = % u_m) .
1 Ve

Note that the parameter w;, which is directly propor-
tional to the magnitude of the coupling coefficient k, is
a measure of the angular bandwidth of the coupled-
mode interaction. In terms of w;, the criterion for the
weak-coupling (or narrow-band) case is, therefore,

(16)

w1 <K wo. ¥

The time-domain amplitude of Mode 2 is now ob-
tained by substituting (14) into (9). The evaluation of
the integral in (9) is greatly simplified if we note that
for the weak coupling case (where w;Kwp), we can ex-
tend the lower limit of the integral to — « without in-
curring significant error; upon doing this, we find that
the time domain amplitude is given by

as(z, 1) = F(z, 1) sin (wof — Boz — ¢) (18)
where
F(z 1) = awiJe {wl[ <¢ _ i) <i_ t) ]1/2} 1
V2 U1
for
(3/v) <t < (z/v1),

and
F(z, 1) =0 (20)

for

b < (2/vs) or t > (z3/v1).

Thus, we see that the response of Mode 2 to an im-
pulse input on Mode 1 consists of a wave of the form
sin (wof—Bp2) that is modulated in amplitude by a
single pulse. A sketch of a typical form of the pulse en-
velope, as a function of 2, is shown in Fig. 2. Note that
the pulse envelope has a sharp leading edge that travels
with velocity v, and a sharp trailing edge that travels
with velocity #;. The maximum amplitude of the pulse
envelope is independent of both 2 and ¢, and the pulse
envelope length, measured along the z axis, increases
linearly with time. The pulse envelope length, measured
along the t axis, increases the linearly with z.

In Fig. 3 we show a normalized time sequence for the
pulse envelope for the special case where v,=2%,. In
these plots, the point where kz=7/2 is marked for ref-
erence since this is the point at which total power trans-
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fer to Mode 2 would have occurred if the input to Mode
1 had been a sinusoid at frequency w.

It is also interesting to consider the total energy car-
ried by the pulse on Mode 2. The spectral energy density
in Mode 2 is given by

d2(3, w)d2*(z, w)

20 W (w) 1)

u(3, w) =

where W{(w) is an appropriate immittance function for
Mode 2. The total energy carried past a given point 2
is, therefore,

1 fw dg(z, w)dz*(z, w) oo, (22)

Ulz) = —
2r W(w)

If the immittance function W(w) is a slowly varying
function of w in the neighborhood of w,, then for the
weak coupling case we can approximate W(w) in the
neighborhood of w, by

W(w) = W(wo> = Wo. (23)
Also, for the weak coupling case, we can extend the
lower limit of the integral in (22) to — » without in-
curring significant error. Thus, upon substituting (23)
and (14) into (22) and extending the lower limit of inte-
gration, we find that

1 0
Uz) = s f_w[Ag(z, w — wo)|?dw (24)
or
w1002 ©
Uz) = f (1 + s9)~1sin? [kz(1 + s)12]ds  (25)
20Wo v o
where
=l (26)
w1

If we make the change of variables s=sinh x in (25),
differentiate with respect to z, recognize a familiar
Bessel function identity and then integrate with respect
to z we find that the pulse energy can be expressed in
the form

aozwlfm(z]()d
x)dx.
aw,J, 7'

Fortunately, the integral in (27) has been tabulated.®
In Fig. 4 we have plotted the normalized pulse energy
as a function of xz. Note that as xz increases, the pulse
energy goes through a sequence of maxima and minima

U(z) =

@7)

¢ Abramowitz, M., and I. A. Stegun, Handbook of Mathematical
Functwnls,SETBS Appl. Math. Ser., U. S. Government Printing Office,
1964, vo .
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Fig. 2. Typical form of pulse envelope on Mode 2 in response to an

impulse input of magnitude ¢ on Mode 1.
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Fig. 3. A time sequence of pulse envelopes on Mode 2
for the case where vy =2v,.
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Fig. 4. Total energy in the pulse on Mode 2 for an
impulse input of magnitude aq on Mode 1.
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and ultimately, for xz>>1, approaches an equilibrium
value. That is,

ay’w1

U(z) —
@) 4W,

(28)

as z— o, The first maximum, where the pulse energy
overshoots the equilibrium value by almost 50 per cent,
occurs at the smallest value of xz for which

that is, at

ks = 1.202. (30)

The position of the first maximum could be used as a
basis for measurement of the coupling coefficient in a
coupled-mode system.

Thus, as the pulse on Mode 2 propagates along the
transmission system, the pulse length grows without
bound and the shape of the pulse envelope continues
to change, but the energy of the pulse approaches an
equilibrium value that is directly proportional to the
magnitude of the coupling coefficient.

A Precise and Sensitive
Providing Automatic

de Ronde: X-Band Reflecio*“meter”
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III. CoMMENTS

Coupled-mode systems are customarily characterized
by their frequency-domain response. We have pre-
sented here a derivation of the time-domain response
of an important class of coupled-mode systems; we
hope that this derivation will provide new insights into
the behavior of these systems.

The principal assumptions that we have made are
1) that the coupling coefficient between modes is inde-
pendent of frequency, and 2) that the w— @8 characteris-
tics of the two modes are straight lines. Note that the
assumption of a linear w—p@ characteristic is not the
same as an assumption of zero dispersion. It is clear
from (14) and (15) that for weak coupling, most of the
energy transfer between modes occurs in the frequency
range wo— @y to wo+wi. Thus, if the w — B characteristics
are straight <n this frequency range, and the coupling
coefficient is constant in this frequency range, then the
results that we have derived here should be approxi-
mately correct. If the w—@ characteristics deviate from
linearity outside of the frequency range wp—w; to ws
~+ w;, the resulting effect would probably be a rounding
of the sharp edges of the pulse on Mode 2.

X-Band Reflecto“meter’
Full-Band Display of

Reflection Coefhicient

F. C. DE RONDE

Abstract—A simple waveguide system has been made for the
instantaneous measurement of the magnitude of the reflection co-
efficient as a function of frequency for the 8.2~12.4 Gc band.

Reflection coefficients in the range 1 to 0.001 can be measured on
linear scales; above 0.01 the error is less than +3 per cent, below
0.01 it is estimated to be in the order of %5 per cent.

By using a long line between the unknown impedance and the
two wall-current detectors, which act as measuring probes, an audio-
frequency voltage has been obtained which is linearly proportional
to the amplitude of the unknown reflection coefficient.

A third wall-current detector is used as a leveler.

The principle is quite simple and can easily be applied for other
frequencies or transmission lines.
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I. INTRODUCTION

EFLECTO“METERS” using directional cou-
R plers and a ratiometer are commonly used for
swept-frequency display. Although they work
much faster than standing-wave indicators their accu-
racy isconsiderably lower. A greatimprovement over the
usual method of two couplers together with broadband
detectors can be obtained if one directional coupler
with built-in wall-current detectors [1], [2] is used.
However, the finite directivity of the directional coupler
and its variation with frequency limits the accuracy
especially at very low values of the reflection coefficient,
while reflection of the coupler limits it at very high
values.



